Using branch-and-bound to solve bi-level geometric programming problems: A new optimization model

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems

The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...

متن کامل

A New Approach to Solve Multiple Objective Programming Problems

Multiple Objective Programming (MOP) problems have become famous among many researchers due to more practical and realistic implementations. There have been a lot of methods proposed especially during the past four decades. In this paper, we develop a new algorithm based on a new approach to solve MOP problems by starting from a utopian point (which is usually infeasible) and moving towards the...

متن کامل

Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems

In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...

متن کامل

Quadratic bi-level programming problems: a fuzzy goal programming approach

This paper presents a fuzzy goal programming (FGP) methodology for solving bi-level quadratic programming (BLQP) problems. In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...

متن کامل

Geometric branch-and-bound methods for constrained global optimization problems

Geometric branch-and-bound methods are popular solution algorithms in deterministic global optimization to solve problems in small dimensions. The aim of this paper is to formulate a geometric branch-and-bound method for constrained global optimization problems which allows the use of arbitrary bounding operations. In particular, our main goal is to prove the convergence of the suggested method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 1990

ISSN: 0307-904X

DOI: 10.1016/0307-904x(90)90018-z